11 research outputs found

    FastWave: Accelerating Autoregressive Convolutional Neural Networks on FPGA

    Full text link
    Autoregressive convolutional neural networks (CNNs) have been widely exploited for sequence generation tasks such as audio synthesis, language modeling and neural machine translation. WaveNet is a deep autoregressive CNN composed of several stacked layers of dilated convolution that is used for sequence generation. While WaveNet produces state-of-the art audio generation results, the naive inference implementation is quite slow; it takes a few minutes to generate just one second of audio on a high-end GPU. In this work, we develop the first accelerator platform~\textit{FastWave} for autoregressive convolutional neural networks, and address the associated design challenges. We design the Fast-Wavenet inference model in Vivado HLS and perform a wide range of optimizations including fixed-point implementation, array partitioning and pipelining. Our model uses a fully parameterized parallel architecture for fast matrix-vector multiplication that enables per-layer customized latency fine-tuning for further throughput improvement. Our experiments comparatively assess the trade-off between throughput and resource utilization for various optimizations. Our best WaveNet design on the Xilinx XCVU13P FPGA that uses only on-chip memory, achieves 66 faster generation speed compared to CPU implementation and 11 faster generation speed than GPU implementation.Comment: Published as a conference paper at ICCAD 201

    zPROBE: Zero Peek Robustness Checks for Federated Learning

    Full text link
    Privacy-preserving federated learning allows multiple users to jointly train a model with coordination of a central server. The server only learns the final aggregation result, thus the users' (private) training data is not leaked from the individual model updates. However, keeping the individual updates private allows malicious users to perform Byzantine attacks and degrade the accuracy without being detected. Best existing defenses against Byzantine workers rely on robust rank-based statistics, e.g., median, to find malicious updates. However, implementing privacy-preserving rank-based statistics is nontrivial and not scalable in the secure domain, as it requires sorting all individual updates. We establish the first private robustness check that uses high break point rank-based statistics on aggregated model updates. By exploiting randomized clustering, we significantly improve the scalability of our defense without compromising privacy. We leverage our statistical bounds in zero-knowledge proofs to detect and remove malicious updates without revealing the private user updates. Our novel framework, zPROBE, enables Byzantine resilient and secure federated learning. Empirical evaluations demonstrate that zPROBE provides a low overhead solution to defend against state-of-the-art Byzantine attacks while preserving privacy.Comment: ICCV 202

    MPCircuits: Optimized Circuit Generation for Secure Multi-Party Computation

    Get PDF
    Secure Multi-party Computation (MPC) is one of the most influential achievements of modern cryptography: it allows evaluation of an arbitrary function on private inputs from multiple parties without revealing the inputs. A crucial step of utilizing contemporary MPC protocols is to describe the function as a Boolean circuit. While efficient solutions have been proposed for special case of two-party secure computation, the general case of more than two-party is not addressed. This paper proposes MPCircuits, the first automated solution to devise the optimized Boolean circuit representation for any MPC function using hardware synthesis tools with new customized libraries that are scalable to multiple parties. MPCircuits creates a new end-to-end tool-chain to facilitate practical scalable MPC realization. To illustrate the practicality of MPCircuits, we design and implement a set of five circuits that represent real-world MPC problems. Our benchmarks inherently have different computational and communication complexities and are good candidates to evaluate MPC protocols. We also formalize the metrics by which a given protocol can be analyzed. We provide extensive experimental evaluations for these benchmarks; two of which are the first reported solutions in multi-party settings. As our experimental results indicate, MPCircuits reduces the computation time of MPC protocols by up to 4.2x

    AdaNS

    No full text

    Machine learning-assisted E-jet printing of organic flexible electronics

    No full text
    Electrohydrodynamic-jet (e-jet) printing technique enables the high-resolution printing of complex soft electronic devices. As such, it has an unmatched potential for becoming the conventional technique for printing soft electronic devices. In this study, the electrical conductivity of the e-jet printed circuits was studied as a function of key printing parameters (nozzle speed, ink flow rate, and voltage). The collected experimental dataset was then used to train a machine learning algorithm to establish models capable of predicting the characteristics of the printed circuits in real-time. Decision tree was applied on the data set and resulted in the accuracy of 0.72 and further evaluations showed that pruning the tree increased the accuracy while sensitivity decreased in the highly pruned trees. The k-fold cross validation (CV) method was used in model selection to test the ability of model to get trained on data. The accuracy of CV method was the highest for random forest at 0.83 and K-NN model (k = 10) at 0.82. Precision parameters were compared to evaluate the supervised classification models. According to F-measure values, the K-NN model (k = 10) and random forest are the best methods to classify the conductivity of electrodes.This is a manuscript of an article published as Shirsavar, Mehran Abbasi, Mehrnoosh Taghavimehr, Lionel J. Ouedraogo, Mojan Javaheripi, Nicole N. Hashemi, Farinaz Koushanfar, and Reza Montazami. "Machine learning-assisted E-jet printing of organic flexible electronics." Biosensors and Bioelectronics (2022): 114418. DOI: 10.1016/j.bios.2022.114418. Copyright 2022 Elsevier B.V. Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). Posted with permission
    corecore